Questions 1-3 refer to the reaction below.

$$
\mathrm{HCN}(\mathrm{aq}) \leftrightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{CN}^{-}(\mathrm{aq}) \quad \mathrm{Ka}=4.9 \times 10^{-10}
$$

1. Given the reaction above for HCN :

Determine the equilibrium constant expression, Ka , for HCN .
(A) $K a=\frac{[H C N]}{\left[H^{+}\right]\left[C N^{-}\right]}$
(B) $K a=\frac{[H C N]}{\left[H^{+}\right]+\left[C N^{-}\right]}$
(C) $K a=\frac{\left[H^{+}\right]\left[C N^{-}\right]}{[H C N]}$
(D) $K a=\frac{\left[H^{+}\right]+\left[C N^{-}\right]}{[H C N]}$
2. Calculate the $\left[\mathrm{H}^{+}\right]$for a 0.20 M solution of HCN at equilibrium.
(A) $\left[H^{+}\right]=4.9 \times 10^{-10} \mathrm{M}$
(B) $\left[\mathrm{H}^{+}\right]=9.9 \times 10^{-6} \mathrm{M}$
(C) $\left[H^{+}\right]=9.8 \times 10^{-11} M$
(D) $\left[H^{+}\right]=7.2 \times 10^{-14} \mathrm{M}$
3. Calculate the pH of a 0.20 M solution of HCN at equilibrium.
(A) $p H=3.40$
(B) $p H=4.50$
(C) $p H=5.00$
(D) $p H=10.01$

Questions 4-5 refer to the solubility product of silver chloride.

4. The K sp for $\mathrm{AgCl}(\mathrm{s})$ at $25^{\circ} \mathrm{C}$ is 1.8×10^{-10}.

Identify the balanced chemical equilibrium reaction for the solubility of $\mathrm{AgCl}(\mathrm{s})$.
(A) $\mathrm{Ag}^{+}+\mathrm{Cl}^{-} \leftrightarrow \mathrm{AgCl}(\mathrm{s})$
(B) $\mathrm{AgCl}(\mathrm{s}) \leftrightarrow \mathrm{Ag}^{+}+\mathrm{Cl}^{-}$
(C) $2 \mathrm{Ag}^{+}+2 \mathrm{Cl}^{-} \leftrightarrow \mathrm{AgCl}(\mathrm{s})$
(D) $\mathrm{AgCl}(s) \leftrightarrow 2 \mathrm{Ag}^{+}+2 \mathrm{Cl}^{-}$
5. Calculate the concentration of $\left[\mathrm{Ag}^{+}\right]$in a saturated solution of AgCl .
(A) $\left[\mathrm{Ag}^{+}\right]=1.8 \times 10^{-10} \mathrm{M}$
(B) $\left[\mathrm{Ag}^{+}\right]=3.6 \times 10^{-8} \mathrm{M}$
(C) $\left[\mathrm{Ag}^{+}\right]=2.6 \times 10^{-5} \mathrm{M}$
(D) $\left[\mathrm{Ag}^{+}\right]=1.3 \times 10^{-5} \mathrm{M}$

Questions 6-7 refer to the reaction below.

$$
\mathrm{Cu}\left(\mathrm{IO}_{4}\right)_{2}(\mathrm{~s}) \leftrightarrow \mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{IO}_{4}^{-}(\mathrm{aq}) \quad \mathrm{Ksp}=1.4 \times 10^{-7}
$$

6. Given the balanced chemical equilibrium reaction for the solubility of copper periodate:

Determine the equilibrium constant expression, Ksp , for $\mathrm{Cu}\left(\mathrm{IO}_{4}\right)_{2}$.
(A) $K s p=\frac{\left[C u^{+}\right]\left[\mathrm{IO}_{4}^{-}\right]}{\left.\left[\mathrm{Cu(IO}_{4}\right)_{2}\right]}$
(B) $K s p=\frac{\left[\mathrm{Cu}^{+}\right]\left[\mathrm{IO}_{-}^{-}\right]^{2}}{\left.\left[\mathrm{Cu(IO}_{4}\right)_{2}\right]}$
(C) $K s p=\left[\mathrm{Cu}^{+}\right]\left[\mathrm{IO}_{4}^{-}\right]$
(D) $\mathrm{Ksp}=\left[\mathrm{Cu}^{+}\right]\left[\mathrm{IO}_{4}^{-}\right]^{2}$
7. Calculate the concentration of $\left[\mathrm{IO}_{4}^{-}\right]$in a saturated solution of copper periodate.
(A) $\left[\mathrm{IO}_{4}^{-}\right]=1.2 \times 10^{-3} \mathrm{M}$
(B) $\left[\mathrm{IO}_{4}{ }^{-}\right]=3.3 \times 10^{-3} \mathrm{M}$
(C) $\left[\mathrm{IO}_{4}^{-}\right]=6.6 \times 10^{-3} \mathrm{M}$
(D) $\left[\mathrm{IO}_{4}{ }^{-}\right]=3.7 \times 10^{-4} \mathrm{M}$

Questions 8-10 refer to the reaction below.

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{HBr}(\mathrm{~g})
$$

8. Given the balanced chemical equilibrium reaction for the equilibrium of hydrogen bromide:

Determine the equilibrium constant expression, K_{c}, for HBr .
(A) $K c=\frac{[H B r]^{2}}{\left[H_{2}\right]\left[B r_{2}\right]}$
(B) $K c=\frac{\left[H_{2}\right]\left[B r_{2}\right]}{[H B r]^{2}}$
(C) $K c=\frac{[H B r]^{2}}{\left[\mathrm{H}_{2}\right]+\left[B r_{2}\right]}$
(D) $K c=\frac{\left[H_{2}\right]+\left[B r_{2}\right]}{[H B r]^{2}}$
9. According to the reaction above, 0.35 M of $\mathrm{H}_{2}(\mathrm{~g})$ and 0.22 M of $\mathrm{Br}_{2}(\mathrm{~g})$ are initially placed in a container. At equilibrium, the concentration of H_{2} is found to be 0.14 M .

Calculate the equilibrium concentrations of $\mathrm{Br}_{2}(\mathrm{~g})$ and $\mathrm{HBr}(\mathrm{g})$.
(A) $\left[B r_{2}\right]=0.14 \mathrm{M},[\mathrm{HBr}]=0.14 \mathrm{M}$
(B) $\left[B r_{2}\right]=0.14 \mathrm{M},[\mathrm{HBr}]=0.28 \mathrm{M}$
(C) $\left[B r_{2}\right]=0.01 \mathrm{M},[\mathrm{HBr}]=0.28 \mathrm{M}$
(D) $\left[B r_{2}\right]=0.01 \mathrm{M},[\mathrm{HBr}]=0.42 \mathrm{M}$
10. Calculate the Kc for the above reaction.
(A) $K c=4$
(B) $K c=14.3$
(C) $K c=126$
(D) $K c=300$

Questions 11-13 refer to the equilibrium of a weak acid.

11. Which of the following particle diagrams best represents the equilibrium of a weak acid.
(A)

(B)

(C)

(D)

12. A certain weak acid has an initial concentration of 0.10 M . This weak acid at equilibrium is found to have a pH of 2.00 .

Calculate the $\left[\mathrm{H}^{+}\right]$concentration of this weak acid at equilibrium.
(A) $\left[\mathrm{H}^{+}\right]=0.01 \mathrm{M}$
(B) $\left[\mathrm{H}^{+}\right]=0.02 \mathrm{M}$
(C) $\left[\mathrm{H}^{+}\right]=0.001 \mathrm{M}$
(D) $\left[H^{+}\right]=0.002 \mathrm{M}$
13. Calculate the Ka value for this weak acid.
(A) $K a=0.50$
(B) $K a=0.11$
(C) $K a=0.0050$
(D) $K a=0.0011$

Questions 14-15 refer to the solubility product of lead (II) bromide.
14. Identify the balanced chemical equilibrium reaction for the solubility of PbBr_{2} (s).
(A) $P b^{2+}(a q)+B r^{-}(a q) \leftrightarrow P b B r_{2}(s)$
(B) ${P b^{2+}}^{2+}(a q)+2 \mathrm{Br}^{-}(a q) \leftrightarrow \operatorname{PbBr}_{2}(s)$
(C) $P b B r_{2}(s) \leftrightarrow P b^{2+}(a q)+B r^{-}(a q)$
(D) $P b B r_{2}(s) \leftrightarrow P b^{2+}(a q)+2 B r^{-}(a q)$
15. The molar solubility of $\mathrm{PbBr}_{2}(\mathrm{~s})$ is 0.01 mol L .

Calculate the Ksp for PbBr_{2}.
(A) $K s p=1 \times 10^{-2}$
(B) $K s p=1 \times 10^{-4}$
(C) $K s p=4 \times 10^{-4}$
(D) $K s p=4 \times 10^{-6}$

