EQUILIBRIUM 1

Questions 1-3 refer to the reaction below.

HCN (aq)
$$\leftrightarrow$$
 H⁺ (aq) + CN⁻ (aq) Ka = 4.9 x 10⁻¹⁰

1. Given the reaction above for HCN:

Determine the equilibrium constant expression, Ka, for HCN.

(A)
$$Ka = \frac{[HCN]}{[H^+][CN^-]}$$

(B) $Ka = \frac{[HCN]}{[H^+]+[CN^-]}$
(C) $Ka = \frac{[H^+][CN^-]}{[HCN]}$
(D) $Ka = \frac{[H^+]+[CN^-]}{[HCN]}$

- 2. Calculate the $[H^+]$ for a 0.20 M solution of HCN at equilibrium.
 - (A) $[H^+] = 4.9 \ x \ 10^{-10} M$ (B) $[H^+] = 9.9 \ x \ 10^{-6} M$ (C) $[H^+] = 9.8 \ x \ 10^{-11} M$ (D) $[H^+] = 7.2 \ x \ 10^{-14} M$
- 3. Calculate the pH of a 0.20 M solution of HCN at equilibrium.
 - (A) pH = 3.40(B) pH = 4.50(C) pH = 5.00(D) pH = 10.01

Questions 4-5 refer to the solubility product of silver chloride.

4. The Ksp for AgCl (s) at 25°C is 1.8 x 10⁻¹⁰. Identify the balanced chemical equilibrium reaction for the solubility of AgCl (s). (A) Ag⁺ + Cl⁻ ↔ AgCl (s) (B) AgCl (s) ↔ Ag⁺ + Cl⁻ (C) 2 Ag⁺ + 2 Cl⁻ ↔ AgCl (s) (D) AgCl (s) ↔ 2 Ag⁺ + 2 Cl⁻

- 5. Calculate the concentration of $[Ag^+]$ in a saturated solution of AgCl.
 - (A) $[Ag^+] = 1.8 \times 10^{-10} M$ (B) $[Ag^+] = 3.6 \times 10^{-8} M$ (C) $[Ag^+] = 2.6 \times 10^{-5} M$ (D) $[Ag^+] = 1.3 \times 10^{-5} M$

EQUILIBRIUM 1

Questions 6-7 refer to the reaction below.

- $Cu(IO_4)_2(s) \leftrightarrow Cu^{2+}(aq) + 2 IO_4^-(aq)$ Ksp = 1.4 x 10⁻⁷
- 6. Given the balanced chemical equilibrium reaction for the solubility of copper periodate: Determine the equilibrium constant expression, Ksp, for Cu(IO₄)₂.

(A)
$$Ksp = \frac{[Cu^+][IO_4^-]}{[Cu(IO_4)_2]}$$

(B) $Ksp = \frac{[Cu^+][IO_4^-]^2}{[Cu(IO_4)_2]}$
(C) $Ksp = [Cu^+][IO_4^-]$
(D) $Ksp = [Cu^+][IO_4^-]^2$

- 7. Calculate the concentration of $[IO_4]$ in a saturated solution of copper periodate.
 - (A) $[IO_4^-] = 1.2 \times 10^{-3}M$ (B) $[IO_4^-] = 3.3 \times 10^{-3}M$ (C) $[IO_4^-] = 6.6 \times 10^{-3}M$ (D) $[IO_4^-] = 3.7 \times 10^{-4}M$

Questions 8-10 refer to the reaction below.

$$H_2(g) + Br_2(g) \leftrightarrow 2 HBr(g)$$

8. Given the balanced chemical equilibrium reaction for the equilibrium of hydrogen bromide: Determine the equilibrium constant expression, K_c, for HBr.

(A)
$$Kc = \frac{[HBr]^2}{[H_2][Br_2]}$$

(B) $Kc = \frac{[H_2][Br_2]}{[HBr]^2}$
(C) $Kc = \frac{[HBr]^2}{[H_2]+[Br_2]}$
(D) $Kc = \frac{[H_2]+[Br_2]}{[HBr]^2}$

9. According to the reaction above, 0.35 M of H₂ (g) and 0.22 M of Br₂ (g) are initially placed in a container. At equilibrium, the concentration of H₂ is found to be 0.14 M.

Calculate the equilibrium concentrations of Br₂ (g) and HBr (g).

(A) $[Br_2] = 0.14 M$, [HBr] = 0.14 M(B) $[Br_2] = 0.14 M$, [HBr] = 0.28 M(C) $[Br_2] = 0.01 M$, [HBr] = 0.28 M(D) $[Br_2] = 0.01 M$, [HBr] = 0.42 M

10. Calculate the Kc for the above reaction.

(A)
$$Kc = 4$$

(B) $Kc = 14.3$
(C) $Kc = 126$
(D) $Kc = 300$

EQUILIBRIUM 1

Questions 11-13 refer to the equilibrium of a weak acid.

11. Which of the following particle diagrams best represents the equilibrium of a weak acid.

12. A certain weak acid has an initial concentration of 0.10 M. This weak acid at equilibrium is found to have a pH of 2.00.

Calculate the [H⁺] concentration of this weak acid at equilibrium.

(A) $[H^+] = 0.01 M$ (B) $[H^+] = 0.02 M$ (C) $[H^+] = 0.001 M$ (D) $[H^+] = 0.002 M$

13. Calculate the Ka value for this weak acid.

(A) Ka = 0.50(B) Ka = 0.11(C) Ka = 0.0050(D) Ka = 0.0011

Questions 14-15 refer to the solubility product of lead (II) bromide.

14. Identify the balanced chemical equilibrium reaction for the solubility of PbBr₂ (s).

(A) $Pb^{2+}(aq) + Br^{-}(aq) \leftrightarrow PbBr_2(s)$ (B) $Pb^{2+}(aq) + 2 Br^{-}(aq) \leftrightarrow PbBr_2(s)$ (C) $PbBr_2(s) \leftrightarrow Pb^{2+}(aq) + Br^{-}(aq)$ (D) $PbBr_2(s) \leftrightarrow Pb^{2+}(aq) + 2 Br^{-}(aq)$

15. The molar solubility of $PbBr_2$ (s) is 0.01 mol L⁻¹.

Calculate the Ksp for PbBr₂. (A) $Ksp = 1 \ x \ 10^{-2}$ (B) $Ksp = 1 \ x \ 10^{-4}$ (C) $Ksp = 4 \ x \ 10^{-4}$ (D) $Ksp = 4 \ x \ 10^{-6}$